Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice
نویسندگان
چکیده
BACKGROUND Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD. METHODS C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV). RESULTS Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups. CONCLUSIONS These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.
منابع مشابه
Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, e...
متن کاملMechanisms of clearance of nontypeable Haemophilus influenzae from cigarette smoke-exposed mouse lungs.
Inflammation is prevalent in all stages of chronic obstructive pulmonary disease, and, furthermore, individuals undergo periods of exacerbation, during which pulmonary inflammation increases, often a result of bacterial infection. The present study investigates the in vivo consequences of cigarette smoke exposure on bacterial challenge with nontypeable Haemophilus influenzae (NTHi). BALB/c and ...
متن کاملVaccine Candidates against Nontypeable Haemophilus influenzae: a Review
Nonencapsulated, nontypeable Hemophilus influenzae (NTHi) remains an important cause of acute otitis and respiratory diseases in children and adults. NTHi bacteria are one of the major causes of respiratory tract infections, including acute otitis media, cystic fibrosis, and community-acquired pneumonia among children, especially in developing countries. The bacteria can also cause chronic dise...
متن کاملCloning of conserved regions of nontypeable Haemophilus influenzae hmw1 core binding domain
Colonization of nontypeable Haemophilus influenzae (NTHi) in nasopharynx causes respiratory tract disease. In 80% of clinical isolates, HMW proteins are the major adhesions and induce protective antibodies in the hosts. Therefore, it can be used as a vaccine candidate. The aim of this study is designing and cloning of the conserved regions of NTHi hmw1 core binding domain.In this study, the sta...
متن کاملImpacts of peroxisome proliferator-activated receptor-γ activation on cigarette smoke-induced exacerbated response to bacteria.
Chronic obstructive pulmonary disease (COPD) is characterised by a state of chronic pulmonary inflammation punctuated by microbial exacerbations. Despite advances in treatment options, COPD remains difficult to manage. In this study, we investigated the potential of peroxisome proliferator-activated receptor (PPAR)γ activation as a new therapy against cigarette smoke-induced inflammation and it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014